Welcome to PhytCore, the open online phytolith database platform.


PhytCore was born in 2011 with the aim of responding to the need for a new open collaborative environment and facilitating the participation of all researchers to discuss and find a common consensus on the identification and nomenclature of phytoliths. PhytCore users are invited to promote discussions and suggestions for each new phytolith morphotype added to the database, as well as to propose new classifications, which will be evaluated by a committee. Within each phytolith image there will be a space showing all the different nomenclatures used for that specific phytolith (when applicable), to facilitate the search and unification of the naming criteria.


The naming and description of the morphotypes included in Phytcore follow, whenever possible, the International Phytolith Nomenclature (ICPN 2.0) (Neumann et al., 2019). The ICPN 2.0 is available in the following link:.


Annals of Botany (ICPN) 2.0

Phytcore accepts the FAIR data principles (Findable, Accessible, Interoperable and Reusable) to promote maximum use of research data (Wilkinson et al., 2016) in phytolith studies. PhytCore platform aims to enable a systemic change of science practices to Open Science in archaeology.


What are phytoliths?

The term phytolith derives from the Greek and means “plant stone”. This term has traditionally been used to refer to particles produced by biomineralization processes in higher plants (Piperno, 1988; 2006). Silica phytoliths (opal, SiO 2 · nH 2 O) are produced by living plants.

Plants take up monosilicic acid (Si(OH) 4 ) from the soil along with water and other minerals and distribute it throughout the aerial parts of the plant via xylem. Specific transporters allow silicon (Si) to exit the xylem, which is then distributed to leaf tissues by the transpiration stream and deposited as silica (SiO 2 · nH 2 O) when water evaporates from the leaf surface (Yoshida et al; 1962). Silica is deposited in a wide range of plant tissues: roots, stems, leaves and inflorescences (Jones et al., 1963; Rosen & Weiner, 1994). For nucleation and growth to occur, biomineral formation requires a localized zone (a physical bounding geometry) that achieves and maintains sufficient supersaturation (Weiner & Dove, 2003). The first locations to silicify are specialized epidermal cells, such as hairs, papillae, and short cells. Three main places where silica is deposited are recognized, the cell wall, the cell lumen and in intercellular spaces (Hodson, 2016; Kumar et al.; 2017).

Phytolith chemistry depends on the cellular environment. For example, while in “cell wall phytoliths” silica is deposited in a carbohydrate matrix that gives the silica some order, “lumen phytoliths” are expected to contain more organic molecules (Hodson, 2016).

Phytolith production is influenced by genetic patterns, ecological conditions, and silica availability (Piperno, 1988, 2006). Not all plants produce phytoliths in the same amounts. For example, while monocot plants are rich in phytoliths, the wood of dicot plants produces very few phytoliths, and sometimes none (Albert & Weiner 2001; Tsartsidou et al., 2007). That is why, when performing modern phytolith benchmark studies, quantitative analyses should also be carried out to better understand phytolith production in each plant studied, considering plant types and different environmental conditions (Albert et al., 1999; Albert & Weiner, 2001; Albert et al., 2003 & Tsartsidou et al., 2007). In archaeological contexts, this information is essential, both to identify anthropogenic contributions of plants in a given context, and to determine in what proportion each plant or plant component is represented.


Chemical and physical properties of phytoliths:

  • Opal (Biogenic Silica) structure is “amorphous” not crystalline. FTIR is an optimal tool to identify amorphous silica including phytoliths (Weiner, 2010). Phytoliths are isotropic. The refractive index ranges from 1.41 to 1.47 (Jones & Beavers, 1963).
  • Phytoliths specific gravity is 1.5-2.3 (Jones & Beavers, 1963).
  • Phytolith size varies from 2 to 100 microns or even larger.
  • Phytolith resistance to pH is from 2 (very acid) to 8.5 (alkaline)(Weiner, 2010)
  • Phytolith chemical composition often contains small amounts of other elements such as carbon (PhytOC), which is a potential tool for radiocarbon dating (Wilding, 1967; Piperno, 1990 & 2015; Kelly et al., 1991; Boaretto, 2015; Asscher et al., 2017; Zuo et al., 2017; & Zuo, & Lu, 2019).

Aspects to be considered when studying phytoliths:

As phytoliths reproduce the cellular tissue of different plant components, a single plant can produce different phytolith morphotypes. This is called multiplicity (Rovner, 1971; Vrydaghs et al., 2016). The association of different characteristic morphotypes of certain plants is crucial to better define the plant provenience. Similar plants can produce similar morphotypes. This is called redundancy (Rovner, 1971; Vrydaghs et al., 2016). The use of morphometric and/or SEM approaches combined with statistical tools (Pearsall et al., 1995; Ball et al., 1999; Berlin et al., 2003; Portillo et al., 2006; Ball et al., 2016, & Ball et al., 2017) has helped for many years to better discriminate between different plants. More recently, other approaches such as the use of confocal microscope (Gallaher et al., 2020) or Deep learning are being considered to overcome this aspect.

Phytoliths in archaeology

PhytCore was created as an archaeological tool (Albert et al., 2016). From the beginning, PhytCore has aimed to help researchers recognize and name phytoliths using modern reference plants that can be later compared to archaeologically recovered phytoliths. The identification of phytoliths as direct evidence of plants in archaeological sites or archaeologically related sites is crucial to better understand human-plants interaction (Albert, et al. 1999; Albert, et al, 2000; Albert & Weiner, 2001; Albert, et al. 2003; Tsartsidou et al., 2007; Alonso-Eguíluz et al., 2017; Esteban et al; 2017; Esteban et al., 2018; Toffolo et al., 2018; Rodríguez-Cintas et al., 2020 & Weiner et al., 2020), but also to reconstruct past landscapes and environmental conditions in particular time-periods (Kurmann, 1985; Piperno, 1989; Barboni et al., 1999; Horrocks et al., 2000; Barboni et al.; 2007 & Neumann et al., 2009; Dickau et al., 2013 & Albert et al., 2015).

Some advantages related to the use of phytoliths in archaeological sites relates to:

  • Phytoliths reproduce the cellular structure of plants (Piperno 1988; Rosen & Weiner, 1994), which makes them recognizable to the plant component and type of plant, even to the species level (Rosen, 1992; Piperno & Pearsall, 1993; Zhao et al., 1998; Ball et al., 1999; Albert et al., 2008).
  • Unlike other archaeobotanical tools, phytoliths can identify different plant tissues of the same plant (Albert et al., 1999; Albert & Weiner, 2001; Madella et al., 2002; Albert et al., 2003; Piperno, 1988; 2006; Collura & Neumann, 2017 & Neumann et al., 2019) and therefore, can offer more complete information on the use of plants for specific activities (Albert et al., 1999; Albert et al.,2006; Esteban et al., 2017 & 2018.
  • Their mineralogical composition (opal) makes them extremely resistant to post-depositional processes being found in deposits of up to million years of age (Strömberg, 2002 & 2004, Bamford et al., 2006 & WoldeGabriel et al., 2009).

On the other hand, silica phytoliths can also dissolve under high alkaline conditions (pH >8.5), particularly with circulating water (Iler, 1979; Albert et al., 2000; Farmer et al., 2005; Fraysse et al., 2006a & 2006b; Weiner, 2010 & Cabanes et al., 2011). The additional help of other tools such as Infrared Spectroscopy (FTIR) or micromorphology may help to better understand the depositional and posdepositional processes (Weiner et al., 1993, Goldberg et al., 2001; Weiner et al., 2002, Karkanas et al., 2002; Berna et al., 2004 & 2007; Chu et al., 2008; Weiner, 2010; Shahack-Gross et al., 2014 & Berna, 2017) that have affected the preservation of phytoliths (Karkanas et al., 2000; Albert & Cabanes, 2007; Weiner, 2010) and the reconstruction of pyrotechnological processes (Albert & Cabanes, 2007; Berna & Goldberg, 2007; Weiner, 2010; Mallol et al., 2013; Berna, 2017; Mallol et al., 2017 & Weiner et al., 2020).


References


Albert, R. M., Lavi, O., Estroff, L., Weiner, S., Tsatskin, A., Ronen, A., & Lev-Yadun, S. (1999). Mode of occupation of Tabun Cave, Mt Carmel, Israel during the Mousterian period: a study of the sediments and phytoliths. Journal of Archaeological Science, 26(10), 1249-1260.

Albert, R. M., Weiner, S., Bar-Yosef, O., & Meignen, L. (2000). Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt Carmel, Israel: study of the plant materials used for fuel and other purposes. Journal of Archaeological Science, 27(10), 931-947.

Albert, R. M., & Weiner, S. (2001). Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. Phytoliths: applications in earth sciences and human history, 251-266.

Albert, R. M., Bar-Yosef, O., Meignen, L., & Weiner, S. (2003). Quantitative phytolith study of hearths from the Natufian and Middle Palaeolithic levels of Hayonim Cave (Galilee, Israel). Journal of Archaeological science, 30(4), 461-480.

Albert, R. M., Bamford, M. K., & Cabanes, D. (2006). Taphonomy of phytoliths and macroplants in different soils from Olduvai Gorge (Tanzania) and the application to Plio- Pleistocene palaeoanthropological samples. Quaternary International, 148(1), 78-94.

Albert, R. M., & Cabanes, D. (2007). Fire in prehistory: An experimental approach to combustion processes and phytolith remains. Israel Journal of Earth Sciences, 56.

Albert, R. M., Bamford, M. K., & Esteban, I. (2015). Reconstruction of ancient palm vegetation landscapes using a phytolith approach. Quaternary International, 369, 51-66.

Albert, R. M., Ruíz, J. A., & Sans, A. (2016). PhytCore ODB: A new tool to improve efficiency in the management and exchange of information on phytoliths. Journal of Archaeological Science, 68, 98-105.

Alonso-Eguíluz, M., Fernández-Eraso, J., & Albert, R. M. (2017). The first herders in the upper Ebro basin at Los Husos II (Álava, Spain): microarchaeology applied to fumier deposits. Vegetation history and archaeobotany, 26(1), 143-157.

Asscher, Y., Weiner, S., & Boaretto, E. (2017). A new method for extracting the insoluble occluded carbon in archaeological and modern phytoliths: Detection of 14C depleted carbon fraction and implications for radiocarbon dating. Journal of Archaeological Science, 78, 57-65.

Ball, T. B., Gardner, J. S., & Anderson, N. (1999). Identifying inflorescence phytoliths from selected species of wheat (Triticum monococcum, T. dicoccon, T. dicoccoides, and T. aestivum) and barley (Hordeum vulgare and H. spontaneum)(Gramineae). American journal of botany, 86(11), 1615-1623.

Ball, T. B., Davis, A., Evett, R. R., Ladwig, J. L., Tromp, M., Out, W. A., & Portillo, M. (2016). Morphometric analysis of phytoliths: recommendations towards standardization from the International Committee for Phytolith Morphometrics. Journal of Archaeological Science, 68, 106-111.

Ball, T., Vrydaghs, L., Mercer, T., Pearce, M., Snyder, S., Lisztes-Szabó, Z., & Pető, Á. (2017). A morphometric study of variance in articulated dendritic phytolith wave lobes within selected species of Triticeae and Aveneae. Vegetation history and archaeobotany, 26(1), 85-97.

Barboni, D., Bonnefille, R., Alexandre, A., & Meunier, J. D. (1999). Phytoliths as paleoenvironmental indicators, west side Middle Awash Valley, Ethiopia. Palaeogeography, Palaeoclimatology, Palaeoecology, 152(1-2), 87-100.

Bamford, M. K., Albert, R. M., & Cabanes, D. (2006). Plio–Pleistocene macroplant fossil remains and phytoliths from Lowermost Bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quaternary International, 148(1), 95-112.

Barboni, D., Bremond, L., & Bonnefille, R. (2007). Comparative study of modern phytolith assemblages from inter-tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 246(2-4), 454-470.

Berlin, A. M., Ball, T., Thompson, R., & Herbert, S. C. (2003). Ptolemaic agriculture,“Syrian wheat”, and Triticum aestivum. Journal of Archaeological Science, 30(1), 115-121.

Berna, F., Matthews, A., & Weiner, S. (2004). Solubilities of bone mineral from archaeological sites: the recrystallization window. Journal of archaeological Science, 31(7), 867-882.

Berna, F., & Goldberg, P. (2007). Assessing Paleolithic pyrotechnology and associated hominin behavior in Israel. Israel Journal of Earth Sciences, 56.

Berna, F., Behar, A., Shahack-Gross, R., Berg, J., Boaretto, E., Gilboa, A., ... & Weiner, S. (2007). Sediments exposed to high temperatures: reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). Journal of Archaeological Science, 34(3), 358-373.

Berna, F. (2017). FTIR microscopy. Archaeological soil and sediment micromorphology, 411-415.

Boaretto, E. (2015). Radiocarbon and the archaeological record: an integrative approach for building an absolute chronology for the Late Bronze and Iron Ages of Israel. Radiocarbon, 57(2), 207-216.

Cabanes, D., Weiner, S., & Shahack-Gross, R. (2011). Stability of phytoliths in the archaeological record: a dissolution study of modern and fossil phytoliths. Journal of Archaeological Science, 38(9), 2480-2490.

Chu, V., Regev, L., Weiner, S., & Boaretto, E. (2008). Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: implications in archaeology. Journal of Archaeological Science, 35(4), 905-911.

Collura, L. V., & Neumann, K. (2017). Wood and bark phytoliths of West African woody plants. Quaternary International, 434, 142-159.

Dickau, R., Whitney, B. S., Iriarte, J., Mayle, F. E., Soto, J. D., Metcalfe, P., ... & Killeen, T. J. (2013). Differentiation of neotropical ecosystems by modern soil phytolith assemblages and its implications for palaeoenvironmental and archaeological reconstructions. Review of Palaeobotany and Palynology, 193, 15-37.

Esteban, I., Albert, R. M., Eixea, A., Zilhão, J., & Villaverde, V. (2017). Neanderthal use of plants and past vegetation reconstruction at the Middle Paleolithic site of Abrigo de la Quebrada (Chelva, Valencia, Spain). Archaeological and Anthropological Sciences, 9(2), 265-278.

Esteban, I., Marean, C. W., Fisher, E. C., Karkanas, P., Cabanes, D., & Albert, R. M. (2018). Phytoliths as an indicator of early modern humans plant gathering strategies, fire fuel and site occupation intensity during the Middle Stone Age at Pinnacle Point 5-6 (south coast, South Africa). PLoS One, 13(6), e0198558.

Farmer, V. C., Delbos, E., & Miller, J. D. (2005). The role of phytolith formation and dissolution in controlling concentrations of silica in soil solutions and streams. Geoderma, 127(1-2), 71-79.

Fraysse, F., Cantais, F., Pokrovsky, O.S., Schott, J., Meunier, J.D., (2006a). Aqueous reactivity of phytoliths and plant litter: physico-chemical constraints on terrestrial biogeochemical cycle of silicon. J. Geochem. Explor. 88, 202-205.

Fraysse, F., Pokrovsky, O.S., Schott, J., Meunier, J.-D., (2006b). Surface properties, solubility and dissolution kinetics of bamboo phytoliths. Geochim. Cosmochim. Acta 70, 1939-1951

Gallaher, T. J., Akbar, S. Z., Klahs, P. C., Marvet, C. R., Senske, A. M., Clark, L. G., & Strömberg, C. A. (2020). 3D shape analysis of grass silica short cell phytoliths: a new method for fossil classification and analysis of shape evolution. New Phytologist, 228(1), 376-392.

Goldberg, P., Weiner, S., Bar-Yosef, O., Xu, Q., & Liu, J. (2001). Site formation processes at Zhoukoudian, China. Journal of Human Evolution, 41(5), 483-530.

Hodson, M. J. (2016). The development of phytoliths in plants and its influence on their chemistry and isotopic composition. Implications for palaeoecology and archaeology. Journal of Archaeological Science, 68, 62-69.

Horrocks, M., Deng, Y., Ogden, J., & Sutton, D. G. (2000). A reconstruction of the history of a Holocene sand dune on Great Barrier Island, northern New Zealand, using pollen and phytolith analyses. Journal of Biogeography, 27(6), 1269-1277.

Iler, K. R. (1979). The chemistry of silica. Solubility, polymerization, colloid and surface properties and biochemistry of silica. Jones, R. L., & Beavers, A. H. (1963). Some mineralogical and chemical properties of plant opal. Soil Science, 96(6), 375-379.

Jones, L. H. P., Milne, A. A., Wadham, S. M. (1963). Studies of silica in the oat plant. II. Distribution of silica in the plant. Plant Soil 18, 358–371.

Karkanas, P., Bar-Yosef, O., Goldberg, P., & Weiner, S. (2000). Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science, 27(10), 915-929.

Karkanas, P., Rigaud, J. P., Simek, J. F., Albert, R. M., & Weiner, S. (2002). Ash bones and guano: a study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France. Journal of Archaeological Science, 29(7), 721-732.

Kelly, E. F., Amundson, R. G., Marino, B. D., & Deniro, M. J. (1991). Stable isotope ratios of carbon in phytoliths as a quantitative method of monitoring vegetation and climate change. Quaternary Research, 35(2), 222-233.

Kumar, S., Soukup, M., & Elbaum, R. (2017). Silicification in grasses: variation between different cell types. Frontiers in Plant Science, 8, 438.

Kurmann, M.H., 1985. An opal phytolith and palynomorph study of extant and fossil soils in Kansas (USA). Palaeogeography, Palaeoclimatology, Palaeoecology 49, 217–235.

Madella, M., Jones, M. K., Goldberg, P., Goren, Y., & Hovers, E. (2002). The exploitation of plant resources by Neanderthals in Amud Cave (Israel): the evidence from phytolith studies. Journal of Archaeological Science, 29(7), 703-719.

Mallol, C., Hernández, C. M., Cabanes, D., Sistiaga, A., Machado, J., Rodríguez, Á., ... & Galván, B. (2013). The black layer of Middle Palaeolithic combustion structures. Interpretation and archaeostratigraphic implications. Journal of archaeological science, 40(5), 2515-2537.

Mallol, C., Mentzer, S. M., & Miller, C. E. (2017). Combustion features. Archaeological soil and sediment micromorphology, 299-330.

Markovich, O., Kumar, S., Cohen, D., Addadi, S., Fridman, E., & Elbaum, R. (2019). Silicification in leaves of sorghum mutant with low silicon accumulation. Silicon, 11(5), 2385-2391.

Neumann, K., Fahmy, A., Lespez, L., Ballouche, A., & Huysecom, E. (2009). The Early Holocene palaeoenvironment of Ounjougou (Mali): phytoliths in a multiproxy context. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1-4), 87-106.

Pearsall, D. M., Piperno, D. R., Dinan, E. H., Umlauf, M., Zhao, Z., & Benfer, R. A. (1995). Distinguishing rice (Oryza sativa Poaceae) from wild Oryza species through phytolith analysis: results of preliminary research. Economic Botany, 49(2), 183-196.

Piperno, D.R., 1988. Phytolith analysis: An Archaeological and Geological Perspective. San Diego, Academic Press: 280 pp.

Piperno, D.R., 1989. The occurrence of phytoliths in the reproductive structures of selected tropical angiosperms and their significance in tropical paleoecology, paleoethnobotany and systematics. Review of Palaeobotany and Palynology 61, 147–173.

Piperno DR (1990) Phytolith analysis: an archaeological and geological perspective. Arct Alp Res 54.

Piperno, D. R., & Pearsall, D. M. (1993). Phytoliths in the reproductive structures of maize and teosinte: implications for the study of maize evolution. Journal of Archaeological Science, 20(3), 337-362.

Piperno, Dolores R. Phytoliths: a comprehensive guide for archaeologists and paleoecologists. Rowman Altamira, 2006.

Piperno DR (2015) Phytolith radioCarbon dating in archaeological and paleoecological research: a case study of phytoliths from modern neotropical plants and a review of the previous dating evidence. J Archaeol Sci 68:54–61.

Portillo, M., Ball, T., & Manwaring, J. (2006). Morphometric analysis of inflorescence phytoliths produced byAvena sativa L. andAvena strigos schreb. Economic Botany, 60(2), 121-129.

Rodríguez-Cintas, A., Albert, R. M., Bamford, M. K., Stanistreet, I. G., Stollhofen, H., Stone, J. R., ... & Toth, N. (2020). Palaeovegetation changes recorded in Palaeolake Olduvai OGCP Core 2A (2.09–2.12 Ma) Naibor Soit Formation Olduvai Gorge, Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology, 557, 109928.

Rosen, A. M. (1992). Preliminary identification of silica skeletons from Near Eastern archaeological sites: an anatomical approach. In Phytolith systematics (pp. 129-147).

Springer, Boston, MA. Rosen, A. M., and Weiner, S. (1994). Identifying ancient irrigation: a new method using phytoliths from emmer wheat. J. Archaeol. Sci. 21, 125.

Rovner, I. (1971). Potential of opal phytoliths for use in paleoecological reconstruction. Quaternary research, 1(3), 343-359.

Shahack-Gross, R., Berna, F., Karkanas, P., Lemorini, C., Gopher, A., & Barkai, R. (2014). Evidence for the repeated use of a central hearth at Middle Pleistocene (300 ky ago) Qesem Cave, Israel. Journal of archaeological science, 44, 12-21.

Sharma, R., Kumar, V., & Kumar, R. (2019). Distribution of phytoliths in plants: A review. Geology, Ecology, and Landscapes, 3(2), 123-148.

Strömberg, C. A. (2002). The origin and spread of grass-dominated ecosystems in the late Tertiary of North America: preliminary results concerning the evolution of hypsodonty. Palaeogeography, Palaeoclimatology, Palaeoecology, 177(1-2), 59-75.

Strömberg, C. A. (2004). Using phytolith assemblages to reconstruct the origin and spread of grass-dominated habitats in the great plains of North America during the late Eocene to early Miocene. Palaeogeography, Palaeoclimatology, Palaeoecology, 207(3-4), 239-275.

Toffolo, M. B., Martin, M. A., Master, D. M., & Boaretto, E. (2018). Microarchaeology of a grain silo: Insights into stratigraphy, chronology and food storage at Late Bronze Age Ashkelon, Israel. Journal of Archaeological Science: Reports, 19, 177-188.

Tsartsidou, G., Lev-Yadun, S., Albert, R. M., Miller-Rosen, A., Efstratiou, N., & Weiner, S. (2007). The phytolith archaeological record: strengths and weaknesses evaluated based on a quantitative modern reference collection from Greece. Journal of Archaeological Science, 34(8), 1262-1275.

Vrydaghs, L., Ball, T. B., & Devos, Y. (2016). Beyond redundancy and multiplicity. Integrating phytolith analysis and micromorphology to the study of Brussels Dark Earth. Journal of archaeological science, 68, 79-88.

Weiner, S., Goldberg, P., & Bar-Yosef, O. (1993). Bone preservation in Kebara Cave, Israel using on-site Fourier transform infrared spectrometry. Journal of Archaeological Science, 20(6), 613-627.

Weiner, S., Goldberg, P., & Bar-Yosef, O. (2002). Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: diagenetic processes and archaeological implications. Journal of Archaeological Science, 29(11), 1289-1308.

Weiner, S., & Dove, P. M. (2003). An overview of biomineralization processes and the problem of the vital effect. Reviews in mineralogy and geochemistry, 54(1), 1-29.

Weiner, Stephen. Microarchaeology: beyond the visible archaeological record. Cambridge University Press, 2010.

Weiner, S., Nagorsky, A., Taxel, I., Asscher, Y., Albert, R. M., Regev, L., ... & Boaretto, E. (2020). High temperature pyrotechnology: A macro-and microarchaeology study of a late Byzantine-beginning of Early Islamic period (7th century CE) pottery kiln from Tel Qatra/Gedera, Israel. Journal of Archaeological Science: Reports, 31, 102263.

Wilding LP (1967) RadioCarbon dating of biogenetic opal. Science 156: 66–67

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., ... & Mons, B. (2016). The FAIR Guiding Principles for scientific data management and stewardship. Scientific data, 3(1), 1-9.

WoldeGabriel, G., Ambrose, S. H., Barboni, D., Bonnefille, R., Bremond, L., Currie, B., ... & White, T. D. (2009). The geological, isotopic, botanical, invertebrate, and lower vertebrate surroundings of Ardipithecus ramidus. science, 326(5949), 65-65e5.

Yoshida, S., Ohnishi, Y., and Kitagishi, K. (1962). Chemical forms, mobility and deposition of silicon in rice plant. Soil Sci. Plant Nutr. 8, 15–21.

Zhao, Z., Pearsall, D. M., Benfer, R. A., & Piperno, D. R. (1998). Distinguishing rice (Oryza sativa poaceae) from wild Oryza species through phytolith analysis, II Finalized method. Economic Botany, 52(2), 134-145.

Zuo, X., Lu, H., Jiang, L., Zhang, J., Yang, X., Huan, X., ... & Wu, N. (2017). Dating rice remains through phytolith carbon-14 study reveals domestication at the beginning of the Holocene. Proceedings of the National Academy of Sciences, 114(25), 6486-6491.

Zuo, X., & Lu, H. (2019). Phytolith radiocarbon dating: a review of previous studies in China and the current state of the debate. Frontiers in Plant Science, 10, 1302.


Why to Register in PhytCore DB ?


Anonymous User Registered User Participant Group User
COSTS
FREE
FREE
FREE
PHYTOLITHS INFORMATION
- Access Phytolith Search
- Access Phytolith Detail
- Create new Phytoliths
- Create Phytolith Reclassification proposals
SITES INFORMATION
- Access Sites List
- Access Site Detail
- Create Archaeological Sites
- Upload Archaeological Sites Pictures
PARTICIPANT GROUPS INFORMATION
- Access Groups List
- Access Group Detail
- Access Group Members List
- Access Member profile
SAMPLES INFORMATION
- Access Samples List
- Access Samples Detail
- Create new Samples
REGISTER
View Images DB



Phytolith images in PhytCoreDB distributed by Sample Type:

Loading Phytolith distribution by Sample Type...

Contact us and join the conversation

If you want to contact us for further information or if you want to collaborate with more phytolith information you can sign up to this website.



Number of transactions in Phytcore by areas of interest:

Loading chart information...
Loading...


Loading...